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SOME STRATIGRAPHIC CONTROL PROBLEMS

UDC 551.311.23+517.946S. N. Antontsev,1 G. Gagneux,2 and G. Vallet2

In this paper, we are interested in lithology diffusion models applied in the field of stratigraphic
basin simulations for large-scale depositional transport processes of sediments. Such models describe
erosion-sedimentation processes and take into account limited weathering via nonstandard unilateral
problems. Various theoretical results, illustrations, and numerical solutions are presented for the
monolithologic column case. A new conservation law involved in modeling is formulated, and math-
ematical tools for solving the problem are described.

Key words: stratigraphic models, limited weathering, ill-posed problems, inverse problems, de-
generated parabolic–hyperbolic conservation laws.

Introduction. New stratigraphic models recently developed by the Institut Francais du Petrole (IFP) lead
to mathematical questions that are difficult to answer within the framework of ill-posed and inverse problems. The
main processes in sedimentary basin evolution are the erosion, deposition mechanism of sediments, and vertical
compaction. At large scales in time and space, dynamic-slope approaches are usually preferred rather than fluid
flow models (see [1, 2]).

The model proposed in [1, 3–5] offers a mathematical description of the coupling of the limited weathering
erosion and the nonlinear lithology diffusion models: the limited weathering process is expressed as an inequality
constraint on the partial time derivative of sediment thickness and a new unknown introduced to limit the fluxes if
the need arises. The compatible coupling between both models is obtained either by imposing unilateral conditions
for the flux limiter and inequality constraints on the erosion rate or by looking for a maximal limiter.

The model proposed does not take into account compaction phenomena [6].
1. Modeling. Let us consider a sedimentary basin with a base Ω. Let Q = ]0, T [× Ω for any positive T .
Physical modeling is based on three assumptions.
Assumption 1. The model is weathering-limited, i.e., the erosion rate is underestimated by a given non-

negative bounded measurable function E in Q: ∂th > −E, where h is the sediment height (topography).
Assumption 2. Unilateral constraints on the outflow boundary Γe have the form λ∂nh+f > 0, ∂th+E > 0,

and (λ∂Nh+ f)(∂th+ E) = 0, where f is a given bounded measurable function on Σ.
To reconcile Assumptions 1 and 2 with the conservative formulation, we use the following assumption:
Assumption 3. The flux of matter q is proportional to ∇h, i.e., q = λ∇h in Q, where λ = λ(t, x) is a

suitable duality multiplier a priori located in the interval [0, 1].
Thus, the mathematical modeling leads to the following assertions:
— mass balance of the sediment

∂th− div (λ∇h) = 0 in Q; (1)

— boundary conditions on ∂Ω = Γe ∪ Γs:

−λ∂nh = f on ]0, T [× Γs; (2)

λ∂nh+ f > 0, ∂th+ E > 0, (λ∂nh+ f)(∂th+ E) = 0 on ]0, T [× Γe; (3)
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— limited weathering conditions

∂th > −E in Q; (4)

— initial conditions

h(0, x ) = h0 in Ω. (5)

Definition 1. A strong solution to problem (1)–(5) is a pair (λ, h) in L∞(Q)× L2(0, T ;H1(Ω)) such that

0 6 λ 6 1 in Q, h(0, x ) = h0 in Ω,

∂th ∈ L2(0, T ;H1(Ω)), ∂th > −E on Γs,

and ∀v ∈ H1(Q) and t ∈ ]0, T [, the following inequality is valid:∫
Ω

∂th(v − ∂th) dx+
∫
Ω

λ∇h∇(v − ∂th) dx+
∫
Γ

f(v − ∂th) dσ +
∫
Γs

χR+(v + E) dσ > 0.

Here χR+(x) = 0 if x > 0 and χR+(x) = +∞ if x < 0.
2. Strong Solution for a Preparatory Problem. We consider now a preparatory problem (1)–(3), (5)

[without condition (4)].
2.1. Existence of a Strong Solution. The following proposition is valid.
Proposition 1. Assume that E and f are regular functions such that λ ∈ W 1,∞(0, T ;L∞(Ω)) for 0 < a

6 λ 6 1 and that there exists a nonnegative function g ∈ L2(Ω) such that, for any v ∈ H1(Ω), one has∫
Ω

[g − E(0)]v dx+
∫
Ω

λ(0)∇h0∇v dx+
∫
Γ

f(0)v dσ = 0. (6)

Then, there exists a unique strong solution h to the preparatory problem (1)–(3), (5).
Let us give a sketch of the proof (see [4, 7] for more details).
1. Based on the Galerkin method, one can prove that, ∀ε, η > 0, there exists a solution hε,η ∈ L2(0, T ;H1(Ω))

such that

∂thε,η ∈ L2(0, T ;H1(Ω)), ∂2
t hε,η ∈ L2(0, T ;L2(Ω)),

hε,η(0, x) = h0,η, ∂thε,η(0) = gη − E,

where gη is a nonnegative sequence of the H1(Ω) functions, which converges to g in L2(Ω); h0,η is a solution to (6),
and ∀v ∈ H1(Ω) and t ∈ ]0, T [, the following equality is satisfied:

ε

∫
Ω

∂2
t hε,ηv dx+

∫
Ω

∂thε,ηv dx+
∫
Ω

λ∇hε,η∇v dx+
∫
Γ

fv dσ −
∫
Γs

βη(∂thε,η + E)v dσ = 0.

Here βη(x) = −(x/η)I]−∞,−1] + (x/η)(x2 + 2)I]−1,0]; IA(x) = 1 if x ∈ A and IA(x) = 0 if x /∈ A.
It was proved in [4] that there exist positive constants M and M ′η (dependent on η) such that, for any t, one

has

‖hη,ε(t)‖V + ‖∂thη,ε(t)‖H + ‖∂thη,ε‖L2(0,t;V ) + ‖η−1G[∂thη,ε + E]‖L1(0,t;H) 6M(1 +
√
ε),

‖
√
ε ∂2

t hη,ε(t)‖H + ‖∂2
t hη,ε‖L2(0,t;H) + ‖∂thη,ε(t)‖V 6M ′η

[G(x) = −β(x)x].
2. Using some compactness arguments, one verifies that ∀η > 0 ∃hη ∈ L2(0, T ;H1(Ω)) such that

∂thη ∈ L2(0, T ;H1(Ω)), ∂2
t hη ∈ L2(0, T ; [H−1(Ω)]′),

hη(0, x ) = h0,η, ∂thη(0) = gη − E,

and ∀v ∈ H1(Ω) and t ∈ ] 0, T [, the following equality is satisfied:∫
Ω

∂thηv dx+
∫
Ω

λ∇hη∇v dx+
∫
Γ

fv dσ −
∫
Γs

βη(∂thη + E)v dσ = 0.
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Moreover, there exists a positive constant M such that

‖hη‖L∞(0,T ;V ) + ‖η−1G[∂thη + E]‖L1(Q) + ‖∂thη‖L2(0,T ;V ) 6M

and ‖∂2
t hη‖L2(0,T ;V ′0 ) 6M . Here V0 = {v ∈ V : v = 0 in Γs}.
3. The existence of the solution is proved with the use of standard compactness and convexity arguments

and weighted time integration.
4. The uniqueness of the solution is proved by monotonicity arguments.
2.2. Limited Weathering Condition. Let us give one of the sufficient conditions of limited weathering.
Proposition 2. Assume that λ, E, and f satisfy the inequalities

div (∂tλ∇h) + ∂tE − div (λ∇h) > 0 in Q,

∂tf − ∂tλ∇h · next + λ∇Enext > 0 on ]0, T [× Γe.

Then, h satisfies the inequality ∂th+ E > 0 in Q.
The proof is based on the maximum principle for the function ∂th.
Example 1. Assume that E(t, x) = E0, f(t, x) = f(x), and λ(t, x) = λ(x), then one has ∂th+E > 0 in Q.
3. Modeling of the Parameter λ. Let us denote by Λad the admissible set of parameters:

Λad = {λ ∈ L∞(Q): ∃h, where (λ, h) is a solution of (1)–(5)}.

Example 2. Assume that E = a > 0, f = 0, and h0 = c > 0. Then, for any measurable 0 6 λ 6 1, the pair
(λ, h0) is a solution of problem (1)–(5) and λ ∈ Λad. Therefore, the problem has a nonunique solution, and other
assumptions are needed to determine λ.

Model 1. Maximal value of λ. We assume that the value of λ is maximal in Λad, i.e.,
1) λ ∈ Λad;
2) ∀µ ∈ Λad, µ 6 λ in Q.
Model 2. Unilateral Constraint for Limited Weathering. We assume that the weathering condition is

effective for λ < 1, i.e.,
1) λ ∈ Λad;
2) (1− λ)(∂th+ E) = 0 in Q.
In other words, if the maximum erosion rate is not reached, then λ = 1; and conversely, if the maximum

erosion rate is attained, λ < 1.
3.1. Heuristic Approach and Ill-Posedness of the Models. Let us give some examples.
Example 3. Assume that E = a > 0, f = 0, and h0 = c > 0. Then:
1) the pair (1, h0) is the unique solution of Model 1;
2) the pair (1, h0) is a solution of Model 2.
Note, if a = 0, for any measurable λ ∈ [0, 1], the pair (λ, h0) is a solution of Model 2. Hence, Model 2 is

ill-posed.
Example 4. Let us consider

Ω = ]0, 1[, E = 0, f = 0, h0 =
n−1∑
i=1

αiI[ai,ai+1[ + αnI[an−1,an], αi > 0.

Then:
1) for any continuous λ such that λ(αi) = 0 (i = 1, . . . , n), the pair (λ, h0) is a solution of Model 2;
2) if the solution of Model 1 exists, then, with allowance for the previous remarks, necessarily, λ = 1 and

1 ∈ Λad. Hence, there exists h∗ such that the pair (1, h∗) is a solution of Model 1, i.e., ∆h0 > 0 in D′(Ω) [by virtue
of weak continuity of ∆h0 at t = 0 and continuity of the derivative ∂th in D′(Ω)]. Such a condition is impossible
(∆h0 is not a Radon measure), and Model 1 is ill-posed.

It should be noted that the research is performed under the assumption of compatible and rather smooth
data.

3.2. Inverse Problem. Another important problem in geology is the inverse problem: For a given topogra-
phy h, is it possible to find an appropriate multiplier–limiter λ? The problem is then stated as follows: determine
the function λ satisfying the equation

div (λ∇h) = ∂th in Q
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and the boundary conditions

−λ∂nh = f on ]0, T [× Γs, λ∂nh+ f > 0, (λ∂nh+ f)(∂th+ E) = 0 on ]0, T [× Γe.

One has to find λ = λ(h) such that the limiter λ is maximum for a given h, i.e.,

1− λ > 0, ∂th+ E > 0, (1− λ)(∂th+ E) = 0 in Q.

3.3. Conclusions about This Modeling. The examples considered show that Models 1 and 2 in the general
case are ill-posed (the solution is either nonexistent or nonunique). These models can be well-posed only for a
special family of initial conditions.

One has to formulate a correct direct problem before resolving the inverse one.
4. New Approach to Model 2. Let us introduce a new way to consider Model 2. We denote by H the

maximum monotone graph of the Heaviside function, i.e., H(x) = 0 if x < 0, H(x) = 1 if x > 0, and H(0) ∈ [0, 1].
Then, formally, the pair (λ, h) is a solution of Model 2 if λ ∈ H(∂th+ E) in Q and one has

∂th− div (λ∇h) = 0 in Q (7)

with appropriate boundary and initial conditions. Indeed,
1. By construction, (λ, h) is a solution of (1)–(3) and (5).
2. If ∂th + E < 0 in ω ⊂ Q, ω 6= Ø, then λ = 0 and ∂th = 0 in ω. As E is nonnegative, ∂th + E is also

nonnegative in ω, i.e., one has a contradiction. Thus, ∂th+ E > 0 in Q \Q0, and Q0 = Ø.
3. If λ ∈ [0, 1] and λ < 1, then ∂th+ E 6 0. Thus, (1− λ)(∂th+ E) = 0 in Q \Q0, and Q0 = Ø.
We begin with approximation of the Heaviside function H by a piecewise-linear continuous function Hε and

consider the equation

∂thε − div (Hε(∂thε + E)∇hε) = 0 in Q

with appropriate boundary and initial conditions. In what follows, the subscript ε is omitted for convenience.
4.1. Remark on the Type of the Regularized Equation. Let us consider the equation

∂tu− div (λ(∂tu)∇u) = 0,

which is a hyperbolic degenerating one. In fact, differentiating this equation, we obtain

∂tu = div (λ(∂tu)∇u) = λ(∂tu)∆u+ λ′(∂tu)∇∂tu∇u.

In the case of one spatial variable for Ω = ]0, 1[, the discriminant of this equation is determined by the formula

∆u = −|λ′(∂tu)∂xu|2/4 6 0.

Introducing the new function

w = λ(∂tu)∂xu, ∂xw = ∂x(λ(∂tu)∂xu) = ∂tu,

we obtain the degenerating hyperbolic equation

λ(∂xw)∂tw = λ′(∂xw)∂xtw + λ2(∂xw)∂xxw

with the discriminant ∆w = −|λ′(∂xw)|2/4 6 0. Note, the equation of this type describes a one-dimensional
unsteady vertical filtration flow in inhomogeneous multi-stratum soil (see [8, 9]). In this case, the pressure ψ(z, t)
and moisture θ(ψ) can be found from the equation

∂tθ − ∂z(K(θ, z)(∂zψ − 1)) = f(θ, z, t) = 0 in Q = Ω×]0, T [. (8)

The hydraulic conductivity is usually found by the following formula:

K(θ, z) =
{
Ks((θ − θr)/(θs − θr))n, θr < θ 6 θs,

0, θ 6 θr.

Here Ks, θr, θs, and n > 1 are constants. The function f(θ, z, t) determines the intensity of extraction of soil water.
The dependence of moisture θ on pressure ψ with allowance for its hysteresis is determined as a certain modification
of Gardner’s formula. For ψ > 0, we obtain θ = θs, and for ψ < 0, we have

θ = θ0 + (θs − θ0)(1 + (1− p)|aψ|m)/(1 + |aψ|m), ∂tψ > 0,

θ = θ0 − p(θs − θ0)/(1 + |bψ|m), ∂tψ 6 0.
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Here, the parameter p is constant within the range of t where ∂tψ retains its sign (−1 6 p < 0 for ∂tψ 6 0 and
0 6 p 6 1 for ∂tψ). At points where the derivative ∂tψ changes its sign, the new value of the parameter p is
determined from the condition of continuity for ψ and θ

ψ
∣∣∣
t±0

= ψ
∣∣∣
t∓0

, −p/(1 + |bψ|m)
∣∣∣
t±0

= (1 + (1− p)|aψ|m)/(1 + |aψ|m)
∣∣∣
t∓0

for ∂tψ
∣∣∣
t±0
6 0 and ∂tψ

∣∣∣
t∓0

> 0. At the initial time t = 0, the distribution p(z) should be given. The parameters

Ks, θr, θs, θ0, n, m, a, and b depend on the soil type. Under the conditions mentioned above, Eq. (8) can be
represented as

∂tu− ∂z(λ(z, u, ut)∂zu) = f̃ in Q = Ω×]0, T [,

where u = θ and f̃ = f + ∂zK(θ, z).
The hyperbolicity of the considered equation ∂tu − div (λ(∂tu)∇u) = 0 justifies the search for the solution

by using the technique of traveling waves.
4.2. Solutions of the Traveling Wave Type. Let us consider the conditions

Ω =]0, 1[, Γe = {0}, Γs = {1},

E∗ > E > 0, ξ = µx+ t (µ > 0), 0 < ξ0 < ξ1,

E(ξ) = EI[0,ξ0[(ξ) + E∗I]ξ0,+∞](ξ),

and look for the special solution

h(t, x) = h(ξ), λ(t, x) = λ(ξ).

Example 5. For (ξ1 − ξ0)/µ2 + E/E∗ 6 1, the pair (h, λ) determined by the equations

h(x, t) = µ2E e−ξ0/µ
2
[1− eξ/µ

2
] + h0(0), λ(x, t) = 1, 0 < ξ 6 ξ0,

h(x, t) = E∗(ξ0 − ξ) + h0(0)− µ2E(1− e−ξ0/µ
2
), λ(x, t) = (ξ − ξ0)/µ2 + E/E∗, ξ0 < ξ 6 ξ1

is a solution of Model 2.
Example 6. For E 6 E∗ e(ξ0−ξ1)/µ2

, the pair (h, λ) determined by the equations

h(x, t) = −Eξ + h0(0), λ(x, t) = (ξ − ξ0)/µ2 + 1, 0 < ξ 6 ξ0,

h(x, t) = µ2E(1− e(ξ−ξ0)/µ2
)− Eξ0 + h0(0), λ(x, t) = 1, ξ0 6 ξ 6 ξ1

is a solution of Model 2.
Example 7. Let us consider the variable ξ = x + µt. Then, if ξ1 = ξ0 + min {µ(h0(0) − E/µ2)/E∗, (E∗

− E)/(µE∗)}, the pair (h, λ) determined by the equations

h(x, t) = E e−µξ0(1− eµξ)/µ2 + h0(0), λ(x, t) = 1, 0 < ξ 6 ξ0,

h(x, t) = E∗(ξ0 − ξ)/µ+ h0(0)− E(1− e−µξ0)/µ2, λ(x, t) = µ(ξ − ξ0) + E/E∗, ξ0 6 ξ 6 ξ1

is a solution of Model 2.
The construction of these examples’ calculus and some graphics can be found in [4].
5. New Conservation Law. Approximation Problems. We study the simplified conservation laws

∂tu− div (H(∂tu)∇u) 3 0 or ∂tu− div (Hε(∂tu)∇u) = 0 in Q,

where H is the maximum monotone graph of the Heaviside function in the case E = 0 and Hε is a suitable
regularization of H.

5.1. Preparatory Approximation Problem. Let us consider the following problem: find a pair (χ,U) such
that

χ ∈ L∞(Q), χ ∈ H(∂tu),

∂tu− div (χ∇u) = 0 in Q,

χ∂nu+ f = 0 on ]0, T [×Γe,
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χ∂nu+ f > 0, ∂tu > 0, (χ∂nu+ f)∂tu = 0 on ]0, T [×Γs,

u(0, x) = u0(x) in Ω.

Here f is nonpositive on ]0, T [×Γs and u0 ∈ H1(Ω)∩L∞(Ω) for u0 > 0. In this section, we offer some mathematical
tools for obtaining an ultraweak solution. Such solutions are the limit in C([0, T ], L2(Ω)) of approximating solutions
obtained from implicit time discretization schemes [10]. Hence, approximation formulas are derived for numerical
methods.

Let ε and h be positive real numbers. For an arbitrary x, we introduce the functions

Hε(x) = max [ε,min (x/ε) + ε, 1], Fε(x) =

x∫
0

1
Hε(t)

dt.

Then, we can prove the following statement.
Proposition 3. There exists a unique sequence ukε ∈ H1(Ω) such that u0

ε = u0 and, ∀v ∈ H1(Ω), v > 0 on
Γs, the following inequality is satisfied:∫

Ω

ukε − uk−1
ε

h

(
v − ukε − uk−1

ε

h

)
dx+

∫
Ω

Hε

(ukε − uk−1
ε

h

)
∇ukε · ∇

(
v − ukε − uk−1

ε

h

)
dx

6
∫
Γs

fk

(
v − ukε − uk−1

ε

h

)
dσ, fk =

1
h

(k+1)h∫
kh

f(s) ds.

Moreover, 0 6 ukε 6 sup
Ω
u0 in Ω and ukε > u

k−1
ε on Γs.

Proof. The inequality 0 6 ukε 6 sup
Ω
u0 follows from the maximum principle. To prove the existence of ukε ,

one has to use the Schauder–Tikhonov fixed-point theorem in an adapted penalization of the constraint ukε > u
k−1
ε

on Γs. The uniqueness follows from the known methods of contracting semigroup techniques.
5.2. Some Estimates of the Solutions. Based on the above-mentioned properties, we come to the following

statements.
Lemma 1. The sequence ukε is bounded in L∞(Ω), independently of ε and h.
Lemma 2. For any integer N , the following estimate is valid:

2
h

N∑
k=1

‖ukε − uk−1
ε ‖2L2(Ω) + ‖∇uNε ‖2(L2(Ω))n +

N∑
k=1

‖∇(ukε − uk−1
ε )‖2(L2(Ω))n 6 ‖∇u0‖2(L2(Ω))n .

Proof. To prove Lemmas 1 and 2, one has to use the function v = (ukε − uk−1
ε )/h− εFε(ukε − uk−1

ε )/h as a
test function and note that

h

∫
Ω

(ukε − uk−1
ε )Fε

(ukε − uk−1
ε

h

)
dx > ‖ukε − uk−1

ε ‖2L2(Ω),

h

∫
Ω

Hε

(ukε − uk−1
ε

h

)
∇ukε · ∇Fε

(ukε − uk−1
ε

h

)
dx =

∫
Ω

∇ukε · ∇ukε − uk−1
ε dx.

We introduce the function

ûε,h(t, x) =
{

(ukε − uk−1
ε )(t− kh)/h+ uk−1

ε , t ∈ [kh; (k + 1)h],
u0(x), t ∈ [0;h].

Then, one can prove the following proposition.
Proposition 4. Independently of ε and h, the sequence ûε,h is bounded in H1(Q)∩L∞(Q)∩L∞(0, T ;H1(Ω)).

Then, the sequence ûε,h is relatively compact in C([0, T ], L2(Ω)) by Ascoli’s lemma.
5.3. Limit of the Sequence as h→ O for a Fixed ε. Note, ∀v ∈ L2(0, T ;H1(Ω)) and v > 0 on ]0, T [×Γs, the

following inequality is valid:∫
Q

∂tûε,hv dx dt+
∫
Q

aε(∂tûε,h)∇ûε,h · ∇v dx dt >
∫

]0,T [×Γs

fv dσ dt+O(h).
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The presence of two weak converging terms aε(∂tûε,h) and ∇ûε,h prevents from passing to the limit over the
time step h→ O and from obtaining a solution of the partial differential equation in the sense of distributions. To
give a limit formulation to this inequality, one can use the Young measure theory. Let us recall the properties of
vectorial Young measures suggested in [11].

Proposition 5. Let Q be a bounded open set Rd and un be a bounded sequence in [L2(Q)]d. Then, there
exists a vectorial Young measure ν in L∞w (Q,Rd) such that

∀f ∈ C(Rd,R) ∃c > 0 and ∀ξ ∈ Rd |f(u)| 6 c(1 + |ξ|),
hence,

∀v ∈ L2(Q)
∫
Q

f(un)v dx→
∫

Q×Rd

f(ξ)v(x) dνx(ξ) dx.

Since 0 6 aε 6 1, in accordance with the previous a priori estimates, these exist uε in H1(Q) and a vectorial
Young measure νε in L∞w (Q,RN+1) such that

∂tu
ε(t, x) =

∫
RN+1

ξ0 dν
ε
(t,x)(ξ), ∂xiu

ε(t, x) =
∫

RN+1

ξi dν(t,x)ε(ξ),

where ξ = (ξ0, ξ1, . . . , ξN ) ∈ RN+1, and the following inequality is satisfied:∫
Q

∂tu
εv dx dt+

N∑
i=1

N+1∫
Q×R

aε(ξ0)ξi ∂xiv dν
ε
(t,x)(ξ) dx dt >

∫
]0,T [×Γs

fv dσ dt

∀v ∈ L2(0, T ;H1(Ω)) and v > 0 on ]0, T [×Γs. In particular, it follows from here that

∂tu
ε − div

[ ∫
RN+1

aε(ξ0)ξi dνε(t,x)(ξ)
]

= 0.

5.4. Limit as ε→ O for a Fixed h. We assume that h is fixed. Then, the following proposition is valid:
Proposition 6. There exists a paired sequence uk, χk in H1(Ω) × L∞(Ω) such that u0

ε = u0, χk ∈ H((uk

− uk−1)/h)) and, ∀v ∈ H1(Ω) and v > 0 on Γs, the following inequality is satisfied:∫
Ω

uk − uk−1

h

(
v − uk − uk−1

h

)
dx+

∫
Ω

χk∇uk · ∇
(
v − uk − uk−1

h

)
dx >

∫
Γs

fk

(
v − uk − uk−1

h

)
dσ.

Moreover, 0 6 uk 6 sup
Ω
u0 in Ω and uk > uk−1 on Γs.

Proof. This result comes inductively from the previous a priori estimates and the identity

Hε

(ukε − uk−1

h

)
∇ukε = hHε

(ukε − uk−1

h

)
∇u

k
ε − uk−1

h
−Hε

(ukε − uk−1

h

)
∇uk−1

= h∇Aε
(ukε − uk−1

h

)
−Hε

(ukε − uk−1

h

)
∇uk−1,

where A′ε = Hε.
We introduce the function

ûh(t, x) =
{

(uk − uk−1)(t− kh)/h+ uk−1, t ∈ [kh; (k + 1)h],
u0(x), t ∈ [0;h].

Then, the following proposition is valid.
Proposition 7. Independently of the time step h, the sequence ûh is bounded in H1(Q) ∩ L∞(Q)

∩L∞(0, T ;H1(Ω)) and, hence, relatively compact in C([0, T ], L2(Ω)). Moreover, χh =
∑
k>0

χkI[kh,(k+1)h[ ∈ H(∂tûh),

∂tûh > 0 in Q.
The results obtained above can also be proved for the following problem: find (χ, u) such that

χ ∈ L∞(Q), χ ∈ H(∂tu+ E),

∂tu− div (χ∇u) = 0 in Q,

∂nu = 0 on ]0, T [× Γe, u = 0 on ]0, T [× Γs,

u(0, x) = u0(x) in Ω,
where E is a nonnegative function of the variable t and u0 > 0 belongs to H1(Ω) ∩ L∞(Ω).
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3. S. N. Antontsev and G. Gagneux, “Quelques remarques sur la recherche de la solution maximale d’un problème
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